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Université catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve,
Belgium
2 International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair),
University of Abomey–Calavi, 072 BP 50, Cotonou, Republic of Benin
3 Physics Department, University of Zambia, PO Box 32379, Lusaka, Zambia

E-mail: Jan.Govaerts@uclouvain.be, hounkonnou@yahoo.fr,
norbert.hounkonnou@cipma.uac.bj, habatwamweene@yahoo.com
and hmweene@unza.zm

Received 14 September 2009
Published 17 November 2009
Online at stacks.iop.org/JPhysA/42/485209

Abstract
The ordinary Landau problem of a charged particle in a plane subjected to
a perpendicular homogeneous and static magnetic field is reconsidered from
different points of view. The role of phase space canonical transformations and
their relation to a choice of gauge in the solution of the problem is addressed.
The Landau problem is then extended to different contexts, in particular the
singular situation of a purely linear potential term being added as an interaction,
for which a complete purely algebraic solution is presented. This solution is
then exploited to solve this same singular Landau problem in the half-plane,
with as motivation the potential relevance of such a geometry for quantum Hall
measurements in the presence of an electric field or a gravitational quantum
well.

PACS numbers: 03.65.−w, 11.10.Nx, 73.43.F

1. Introduction

The classic textbook example [1] of the quantum Landau problem has remained a constant
source of fascination and inspiration [2], in fields apparently so diverse as two-dimensional
collective quantum fermionic systems [3, 4], the search towards a fundamental unification
of gravity with the other quantum interactions, or noncommutative deformation quantization
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of geometries [5, 6]. The same algebraic structures are also realized in M-theory in specific
limits of some background field configurations [7]. It is in view of the latter developments as
well as the phenomenology of the integer and fractional quantum Hall effects that in recent
years the Landau problem has become once again the focus of intense interest.

Yet, there remain somewhat intriguing issues open even for the simple original Landau
problem. Consider thus a charged particle of mass m moving in an Euclidean plane of
coordinates (x1, x2) and subjected to a static and homogeneous magnetic field perpendicular
to that plane, with a component B along the right-handed perpendicular direction which,
without loss of generality (by choosing the plane orientation appropriately), may be taken to
be positive, B > 0 (this factor, B, is also normalized so as to absorb the charge of the particle).
Denoting by (A1(x1, x2), A2(x1, x2)) the components of a vector potential from which the
magnetic field derives, ∂1A2 − ∂2A1 = B, it is well known that the dynamics of the system is
specified through the variational principle from the following Lagrange function,

L = 1
2m

(
ẋ2

1 + ẋ2
2

)
+ ẋ1A1(x1, x2) + ẋ2A2(x1, x2), (1)

with a Hamiltonian function for the canonically conjugate pairs of phase space variables
(xi, pi) (i = 1, 2),

H = 1

2m
(p1 − A1(x1, x2))

2 +
1

2m
(p2 − A2(x1, x2))

2. (2)

The usual discussion [1] considers the Landau gauge for the vector potential,

ALandau
1 = −Bx2, ALandau

2 = 0, (3)

in which case one has

H = 1

2m
p2

2 +
1

2
mω2

c

(
x2 +

1

B
p1

)2

, (4)

with the cyclotron frequency ωc = B/m. For the quantized system, by introducing the Fock
algebra generators

a =
√

mωc

2h̄

[(
x̂2 +

1

B
p̂1

)
+

i

mωc

p̂2

]
, a† =

√
mωc

2h̄

[(
x̂2 +

1

B
p̂1

)
− i

mωc

p̂2

]
, (5)

with

[x̂1, p̂1] = ih̄I, [a, p̂1] = 0, [a, x̂1] = −i

√
h̄

2B
I, [a, a†] = I, (6)

such that Ĥ = h̄ωc(a
†a + 1/2), it is clear that the energy spectrum is spanned by Fock states

|n, p1〉 (n = 0, 1, 2, . . .) with an energy h̄ωc(n + 1/2) which is degenerate in p1—the famous
Landau levels—the latter real variable p1 labelling the p̂1 eigenstates.

However what is puzzling, perhaps, about this solution is the fact that because of the
free particle plane wave component of the configuration space wave function representation
of these states related to the p1 eigenvalue, none of these states is normalizable,

〈n, p1|m,p′
1〉 = δnm δ(p1 − p′

1), (7)

while this basis of states is non-countable and their wave functions are localized only in the x2

direction (through the Gaussian factor and Hermite polynomials in the (x2 + p1/B) variable)
but not at all in the x1 direction where they display complete delocalization (note also that
the (x̂1, p̂1) sector does not commute with the Fock algebra, only the conjugate momentum
operator, p̂1, does). And yet the classical trajectories of such a particle are circles of which the
radius is a function of the energy of the solution, the angular frequency is ωc and the magnetic
centre is pinned at a static position in the plane dependent on the initial conditions. Hence,
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rather than the above quantum states, one should expect that there ought to exist another basis
of the energy eigenstates which describes normalizable and localized wave functions.

Indeed as is well known, in the circular or symmetric gauge,

A
sym
1 = − 1

2Bx2, A
sym
2 = + 1

2Bx1, (8)

once expanded, the Hamiltonian

H = 1

2m

(
p1 +

1

2
Bx2

)2

+
1

2m

(
p2 − 1

2
Bx1

)2

, (9)

coincides with that of a two-dimensional spherically symmetric harmonic oscillator of angular
frequency ωc/2 to which a term proportional to its angular momentum is added. Working in
a complex parametrization of the plane, it is clear5 that the system is then diagonalized with
a countable energy eigenspectrum of Fock states, possessing the same energy spectrum as
above, but now represented by wave functions which are all localized and normalizable (and
in fact centred onto the point (x1, x2) = (0, 0)).

At first sight, what distinguishes the above two gauge choices at the quantum level is a
redefinition of the wave functions of quantum states by a pure phase factor, eiχ(x1,x2), related
to the gauge transformation mapping the two choices of vector potentials into one another,

A
sym
i = ALandau

i + ∂iχ, χ(x1, x2) = 1
2Bx1x2. (10)

The phase factor eiχ being singular at the point at infinity in the plane could be thought to
be the reason for the non-normalizability and non-localizability of energy eigenstates in the
Landau gauge. However, being a pure phase, such a phase redefinition alone cannot explain
why out of a localized and normalized wave function in the symmetric gauge, one obtains a
delocalized and non-normalizable one in the Landau gauge.

In section 2, this question is addressed in detail and resolved. Then, in section 3, using
the understanding gained from section 2, and mostly to set notations for later use, the original
Landau problem is extended by adding an interaction potential energy which combines that
of a spherically symmetric harmonic well and a linear potential. When the harmonic well is
removed an apparent puzzle arises, the resolution of which is discussed in section 4 using a
purely algebraic approach. To the best of our knowledge, the present algebraic solution—as
opposed to a wave function solution of the Schrödinger equation in the Landau gauge—for
the Landau problem extended with a linear potential is not available in the literature. Finally,
using the insight provided by this construction and motivated by some physical considerations,
section 5 discusses the same linearly extended Landau problem in the half-plane. The paper
ends with some conclusions.

2. The ordinary Landau problem

2.1. A general choice of gauge

With the Lagrangian defined in (1), let us consider the following general class of gauge choices
for the vector potential,

A1(x1, x2) = − 1
2B(x2 − x2) + ∂1χ(x1, x2), A2(x1, x2) = 1

2B(x1 − x1) + ∂2χ(x1, x2).

(11)

Here, (x1, x2) are two constant parameters representing the position of a particular point in
the plane, about which configuration space wave functions representing the Fock states to

5 This is detailed in section 2.
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be identified hereafter are centred and localized. Furthermore, χ(x1, x2) is an arbitrary real
function representing a possible gauge redefinition of the chosen vector potential. Note that
the parameters (x1, x2) could also be absorbed into that gauge transformation function, but it is
useful to keep these two constants explicit. Clearly the previous symmetric gauge corresponds
to the values (x1, x2) = (0, 0) and χ = 0, while the Landau gauge to (x1, x2) = (0, 0) and
χ = −Bx1x2/2.

Incidentally, it may easily be checked that the Euler–Lagrange equations of motion that
derive from (1) are gauge invariant, namely independent of both (x1, x2) and χ(x1, x2), as
should be of course.

For what concerns the classical Hamiltonian formulation of the system, the Hamiltonian
reads

H = 1

2m

(
p1 +

1

2
B(x2 − x2) − ∂1χ

)2

+
1

2m

(
p2 − 1

2
B(x1 − x1) − ∂2χ

)2

, (12)

where the phase space variables (xi, pi) possess canonical Poisson brackets, {xi, pj } = δij

(i, j = 1, 2). Introducing now the following new parametrization of phase space,

ui = xi − xi, πi = pi − ∂iχ(xi), (13)

which defines yet again canonically conjugate pairs of variables,

{ui, uj } = 0, {ui, πj } = δij , {πi, πj } = 0, (14)

one has

H = 1

2m

(
π1 +

1

2
Bu2

)2

+
1

2m

(
π2 − 1

2
Bu1

)2

= 1

2m

(
π2

1 + π2
2

)
+

1

2
m

ω2
c

4

(
u2

1 + u2
2

) − 1

2
ωc (u1π2 − u2π1) . (15)

The system has thereby been brought into the form it has in the symmetric gauge centred at
(x1, x2) = (0, 0), independently of the original choice of gauge. Note well that this includes
the Landau gauge, however now with a choice of phase space canonical coordinates which
differs from that which led to (4). This point is addressed more specifically hereafter.

The resolution of the quantized system is now straightforward. Given the quantum
commutation relations,

[ûi , π̂j ] = ih̄δij I, û
†
i = ûi , π̂

†
i = π̂i , (16)

one first introduces the cartesian Fock algebra generators,

ai = 1

2

√
B

h̄

(
ûi +

2i

B
π̂i

)
, a

†
i = 1

2

√
B

h̄

(
ûi − 2i

B
π̂i

)
, (17)

such that [
ai, a

†
j

] = δij I, (18)

while

Ĥ = 1
2h̄ωc

(
a
†
1a1 + a

†
2a2 + 1

)
+ 1

2 ih̄ωc

(
a
†
1a2 − a

†
2a1

)
. (19)

Next one introduces the chiral Fock algebra generators,

a± = 1√
2
(a1 ∓ ia2), a

†
± = 1√

2

(
a
†
1 ± ia†

2

)
, (20)

such that [
a±, a

†
±
] = I,

[
a±, a

†
∓
] = 0. (21)
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A direct substitution6 then finds

Ĥ = h̄ωc

(
a
†
−a− + 1

2

)
. (22)

Consequently, given the orthonormalized Fock state basis |n−, n+〉 (n± = 0, 1, 2, . . .) defined
by

|n−, n+〉 = 1√
n−!n+!

(
a
†
−
)n−(

a†
+

)n+ |0〉, a±|0〉 = 0, 〈0|0〉 = 1, (23)

these states diagonalize the energy eigenspectrum of the system,

Ĥ |n−, n+〉 = E(n−) |n−, n+〉, E(n−) = h̄ωc

(
n− + 1

2

)
. (24)

Hence indeed the same energy spectrum as in the Landau gauge is obtained, however now
with a countable basis of eigenstates which are all normalizable and localized in the plane.
More specifically, it may be shown [8] that in the configuration space representation the wave
functions of these chiral Fock states are given as

〈x1, x2|n−, n+〉 = (−1)m√
2πh̄

√
m!

(m + |�|)! u|�|/2 ei�θ e− 1
2 u L|�|

m (u), (25)

where � = n+ − n−, m = min(n−, n+) = n− + (� − |�|)/2 and L
|�|
m (u) are the generalized

Laguerre polynomials, while

u = mωc

2h̄
[(x1 − x1)

2 + (x2 − x2)
2], eiθ = (x1 − x1) + i(x2 − x2)√

(x1 − x1)2 + (x2 − x2)2
. (26)

Clearly all these states are thus indeed localized and centred at the point (x1, x2), and
normalizable, independently of the chosen gauge for the vector potential, including the Landau
gauge. This result is achieved by having identified the appropriate canonical phase space
transformation which undoes any gauge transformation away from the symmetric gauge,
while at the same time moving the set of localized Fock states to be centred at any given point
in the plane.

2.2. The solution in the Landau gauge

In terms of the general parametrization for a gauge choice in (11), the Landau gauge as defined
in the introduction corresponds to the function

χ(x1, x2) = − 1
2B(x1 − x1)(x2 + x2). (27)

Consequently, one then finds

π1 = p1 + 1
2B(x2 + x2), π1 + 1

2Bu2 = π1 + 1
2B(x2 − x2) = p1 + Bx2,

π2 = p2 + 1
2B(x1 − x1), π2 − 1

2Bu1 = π2 − 1
2B(x1 − x1) = p2,

(28)

so that indeed,

H = 1

2m
(p1 + Bx2)

2 +
1

2m
p2

2. (29)

Given these relations in the Landau gauge, it is now possible to express the operators x̂i

and p̂i in terms of the cartesian and chiral Fock operators introduced above. One then finds

x̂1 = x1 +

√
h̄

B

(
a1 + a

†
1

)
, x̂2 = x2 +

√
h̄

B

(
a2 + a

†
2

)
, (30)

6 The inverse relations expressing ûi and π̂i in terms of (a±, a
†
±) are easily worked out.
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p̂1 = − 1
2 i

√
h̄B

(
a1 − a

†
1

) − 1
2

√
h̄B

(
a2 + a

†
2

) − Bx2,

p̂2 = − 1
2 i

√
h̄B

(
a2 − a

†
2

) − 1
2

√
h̄B

(
a1 + a

†
1

)
.

(31)

We then have

p̂2 = −
√

h̄B

2

(
a− + a

†
−
)
, x̂2 +

1

B
p̂1 = −i

√
h̄

2B

(
a− − a

†
−
)
, (32)

so that the (a, a†) Fock generators defined in (5) in the Landau gauge correspond to

a = −ia−, a† = ia†
−. (33)

Hence, we have indeed that

Ĥ = h̄ωc

(
a
†
−a− + 1

2

) = h̄ωc

(
a†a + 1

2

)
, (34)

explaining why the same values for the energy spectrum are obtained in both constructions
for the quantum solution. However, in the discussion as recalled in the introduction, the
degeneracy of Landau levels is accounted for in terms of the eigenstates of p̂1, namely,

p̂1 = −i

√
h̄B

2

(
a+ − a†

+

) − Bx2, (35)

rather than the Fock states |n+〉 of the Fock algebra
(
a+, a

†
+

)
as obtained in the previous general

solution irrespective of the choice of gauge. Therefore, when expressed in terms of these Fock
states, the solution to the eigenvalue equation,

p̂1|p1〉 = p1|p1〉, p1 ∈ R, (36)

involves an infinite linear combination of all Fock states |n+〉 which is not normalizable.
In other words, the reason why the usual solution to the Landau problem in the Landau

gauge leads to states which, within each of the Landau levels, are not normalizable nor
localized, is not at all related to that particular choice of gauge. Rather, it is because that
choice of gauge naturally leads one to use such a canonical parametrization of phase space
which upon its canonical quantization produces a basis of energy eigenstates which, in each
Landau level, are not normalizable nor localized. However, this singular character in the choice
of basis within each Landau level is avoided by an appropriate canonical transformation which
upon its canonical quantization produces a basis of energy eigenstates which, as Fock states,
are all normalizable and localized irrespective of the choice of gauge. It is thus coincidental
that precisely in the Landau gauge, the generic canonical phase space parametrization valid for
any choice of gauge is just not manifest enough, so that one is led rather onto a path towards
another construction of a solution for energy eigenstates which are no longer normalizable nor
localized.

This analysis thus also shows that it is preferable to consider in all cases a parametrization
of the general choice of gauge as in (11), which in effect is a gauge transformed form of
the symmetric gauge. One is then assured that if energy eigenstates are not normalizable or
localized, there is actually a physical justification or meaning to such a singular character,
rather than being due to some inappropriate choice of canonical parametrization of phase
space.

3. The Landau problem with a quadratic and linear potential

Given the above understanding of the preferred choice of gauge, let us now consider an
extension of the Landau problem which includes an interaction potential energy, V (x1, x2),

6
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still leading to linear equations of motion, whether at the classical level or the quantum one
in the Heisenberg picture. In order to remain consistent with the rotational invariance of the
original problem, this potential consists of a spherically symmetric harmonic well of angular
frequency ω0 > 0 centred at the origin (x1, x2) = (0, 0), to which a linear term is added,
lying—by an appropriate choice of planar coordinates (x1, x2)—in the x2 direction,

V (x1, x2) = 1
2mω2

0

(
x2

1 + x2
2

)
+ γ x2. (37)

Here γ is a real constant parameter, setting the strength of a constant pull onto the particle in
the (−x2) direction (for positive γ ). This linear potential may correspond, for instance, to a
constant electric field lying inside the plane and along the x2 direction. Another possibility
is a gravitational potential term if the plane is tilted with respect to the horizontal direction
by some angle α, in which case one has γ = mg cos α if x2 increases upwards, g > 0 being
the gravitational acceleration. These two examples thus indicate to which types of physical
configurations such a linear potential could correspond.

Choosing for the vector potential the symmetric gauge as in (8) does not lead to a
straightforward resolution of either the Hamiltonian or the quantum dynamics. Indeed, since
that choice is centred onto the point (x1, x2) = (0, 0), it clashes with the fact that because of the
linear term in the potential energy, the total potential energy—still spherically symmetric—is
centred onto a minimal position given by

x1 = 0, x2 = − γ

mω2
0

, (38)

since

V (x1, x2) = 1

2
mω2

0

(
x2

1 +

(
x2 +

γ

mω2
0

)2
)

− γ 2

2mω2
0

. (39)

Obviously classical trajectories will then be centred onto that static average position in the
plane. Consequently, it is preferable to adapt the choice of symmetric gauge in the following
way

A1(x1, x2) = −1

2
B

(
x2 +

γ

mω2
0

)
, A2(x1, x2) = +

1

2
Bx1. (40)

The Hamiltonian is then of the form,

H = 1

2m

(
p1 +

1

2
B

(
x2 +

γ

mω2
0

))2

+
1

2m

(
p2 − 1

2
Bx1

)2

+
1

2
mω2

0

(
x2

1 + x2
2

)
+ γ x2

= 1

2m

(
p2

1 + p2
2

)
+

1

2
mω2

(
x2

1 +

(
x2 +

γ

mω2
0

)2
)

− 1

2
ωc

(
x1p2 −

(
x2 +

γ

mω2
0

)
p1

)
− γ 2

2mω2
0

, (41)

where ω =
√

ω2
0 + ω2

c

/
4.

The diagonalization of this quantum Hamiltonian is now straightforward enough.7 Given
the Heisenberg algebra [x̂i , p̂j ] = ih̄δij I, let us first introduce the following cartesian Fock

7 Had one not chosen the symmetric gauge centred on the point in (38), there would have remained terms linear in
p̂1 in Ĥ spoiling the simplicity of the present solution.
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algebra, this time in terms of the effective angular frequency ω rather than the cyclotron one,
ωc,

a1 =
√

mω

2h̄

(
x̂1 +

i

mω
p̂1

)
, a

†
1 =

√
mω

2h̄

(
x̂1 − i

mω
p̂1

)
,

a2 =
√

mω

2h̄

(
x̂2 +

γ

mω2
0

I +
i

mω
p̂2

)
, a

†
2 =

√
mω

2h̄

(
x̂2 +

γ

mω2
0

I − i

mω
p̂2

)
,

(42)

which are such that,[
ai, a

†
j

] = δij I. (43)

Introduce now once again the chiral or helicity Fock algebra operators

a± = 1√
2
(a1 ∓ ia2) , a

†
± = 1√

2

(
a
†
1 ± ia†

2

)
, (44)[

a±, a
†
±
] = I. (45)

A simple substitution then finds for the quantum Hamiltonian,

Ĥ = h̄ω
(
a†

+a+ + a
†
−a− + 1

) − 1

2
h̄ωc

(
a†

+a+ − a
†
−a−

) − γ 2

2mω2
0

, (46)

which is thus diagonalized on the basis of Fock states |n−, n+〉 (n± = 0, 1, 2, . . .) constructed
out of the chiral Fock algebra,

Ĥ |n−, n+〉 = E(n−, n+) |n−, n+〉, E(n−, n+) = h̄ω+n− + h̄ω−n+ + h̄ω − γ 2

2mω2
0

, (47)

where

ω+ = ω + 1
2ωc, ω− = ω − 1

2ωc. (48)

The energy eigenspectrum thus consists of normalizable and localized states. As a matter
of fact, the configuration space wave functions, 〈x1, x2|n−, n+〉, of these chiral Fock states are
given as in (25), with this time the following definition for the two variables u and θ ,

u = mω

h̄

[
x2

1 +

(
x2 +

γ

mω2
0

)2
]

, eiθ =
x1 + i

(
x2 + γ

mω2
0

)
√

x2
1 +

(
x2 + γ

mω2
0

)2
. (49)

It is also of interest to consider the time evolution of the quantum phase space operators
(x̂i , p̂i) in the Heisenberg picture. Given the above expression for the quantum Hamiltonian,
the time evolution of each of the Fock algebra operators is readily identified, leading to

x̂1(t) = 1

2

√
h̄

mω

(
a+ e−iω−t + a− e−iω+t + a†

+ eiω−t + a
†
− eiω+t

)
,

x̂2(t) = − γ

mω2
0

I +
1

2
i

√
h̄

mω

(
a+ e−iω−t − a− e−iω+t − a†

+ eiω−t + a
†
− eiω+t

)
,

p̂1(t) = −1

2
imω

√
h̄

mω

(
a+ e−iω−t + a− e−iω+t − a†

+ eiω−t − a
†
− eiω+t

)
,

p̂2(t) = 1

2
mω

√
h̄

mω

(
a+ e−iω−t − a− e−iω+t + a†

+ eiω−t − a
†
− eiω+t

)
.

(50)

Of course, these expressions provide the explicit solutions to the linear Hamiltonian equations
of motion of the system, whether at the classical level or the quantum level in the Heisenberg

8
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picture. Note well that all the above operators
(
a±, a

†
±
)

are defined by the initial Heisenberg
commutation relations specified either in the Schrödinger picture, or the Heisenberg picture
at initial time t = 0.

All these expressions reproduce also those of the ordinary Landau problem of section 2.1,
provided however the limits in ω2

0 → 0 and γ → 0 are taken appropriately. First, the linear
potential term needs to be removed, γ → 0, and only then is the spherically symmetric well to
be flattened out, ω2

0 → 0. All the expressions above are then smoothly mapped back to those
of section 2.1. In other words, by first bringing the equilibrium point of the total spherically
symmetric potential back to the origin of the plane, (x1, x2) = (0, 0), namely by first removing
the linear contribution, and only then removing the spherical well, one reproduces the original
Landau problem.

However when the limits are considered in the reverse order, one immediately runs
into singularities. Indeed, note that when first the spherical well is flattened out while still
keeping the constant force acting on the particle, ω2

0 → 0 but γ 	= 0, singularities in the
quantity γ

/(
mω2

0

)
arise and the operators

(
a2, a

†
2

)
, and hence

(
a±, a

†
±
)
, are then no longer

well defined, nor is thus the general solution in (50) and the chiral Fock states |n−, n+〉.
Classically, by first removing the spherical well the particle is being set free—it is no

longer confined within the well—and being subjected to a constant force inside the plane in
conjunction with the magnetic force which is always perpendicular to its velocity, the net
result is a circular motion around a magnetic centre which rather than being static as in the
ordinary Landau problem now moves at a constant velocity in a direction perpendicular to
both the magnetic field and the constant force, namely in our case along the x1 direction with
the velocity,

ẋc
1 = − γ

B
, ẋc

2 = 0. (51)

In terms of the above solution considered at the classical level, in the limit ω2
0 → 0 one has

ω− → 0, so that the actual classical solution acquires a linear time dependence—the one
describing the motion of its magnetic centre at a constant velocity—combined with a periodic
circular motion of angular frequency ω+ → ωc once again, about that moving magnetic centre.
Applying a Galilei boost taking the system to the inertial frame of the magnetic centre, one
recovers the ordinary Landau problem. Note that the motion of the magnetic centre is along
the x1 axis, but with a value for x2 which is a function of the initial conditions for the classical
trajectory.

Rather than considering trying to apply to the above quantum solution, in particular the
construction of its chiral Fock states, a singular limiting procedure which at the classical
level produces out of the general solutions in (50) the correct ones when ω2

0 = 0, since the
Hamiltonian equations of motion are linear and thus identical whether for the classical or the
quantum system it is more straightforward to immediately consider the situation with ω2

0 = 0
and γ 	= 0 at the classical level, and out of its solutions construct the appropriate realization of
the quantum system in that singular case of the extended Landau problem. Such an approach
is also simpler than trying to apply to the ordinary Landau problem a Galilei boost from the
magnetic centre frame back to the initial frame in which the dynamics of the system is being
considered.

4. The Landau problem with a linear potential

In the symmetric gauge, the Lagrangian of the system now reads

L = 1
2m

(
ẋ2

1 + ẋ2
2

) − 1
2B (ẋ1x2 − x1ẋ2) − γ x2, (52)

9
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hence the Hamiltonian

H = 1

2m

(
p1 +

1

2
Bx2

)2

+
1

2m

(
p2 − 1

2
Bx1

)2

+ γ x2. (53)

Trying to apply to the quantized version of the system the same types of operator redefinitions
as those of section 3 runs into the difficulty that the term linear in γ x2 remains non-diagonal
in whatever Fock state basis being considered. In order to tackle this issue, in the same way
as was discussed in section 2.2 for the ordinary Landau problem in the Landau gauge, first a
canonical transformation of phase space parametrization is required, which readily provides at
the quantum level the diagonalized Hamiltonian, hence the solution to the quantum dynamics
of the system.

Rather than specifying this canonical transformation still at the classical level and in terms
of Poisson brackets, let us already define it at the quantum level for the quantum operators
and their commutation relations in the Schrödinger picture, or the Heisenberg picture at time
t = 0. Consider then the following definitions, from the variables (x̂i , p̂i) to the variables(
x̂c

1, x̂
c
2, a−, a

†
−
)
,

x̂c
1 = 1

2
x̂1 +

1

mωc

p̂2,

x̂c
2 = 1

2
x̂2 − 1

mωc

p̂1 − γ

mω2
c

,

a− =
√

mωc

2h̄

(
1

2
x̂1 − 1

mωc

p̂2

)
+

i

mωc

√
mωc

2h̄

(
p̂1 +

1

2
mωcx̂2 +

γ

ωc

I

)
,

a
†
− =

√
mωc

2h̄

(
1

2
x̂1 − 1

mωc

p̂2

)
− i

mωc

√
mωc

2h̄

(
p̂1 +

1

2
mωcx̂2 +

γ

ωc

I

)
.

(54)

The inverse relations are

x̂1 = x̂c
1 +

√
h̄

2mωc

(
a− + a

†
−
)
,

x̂2 = x̂c
2 − i

√
h̄

2mωc

(
a− − a

†
−
)
,

p̂1 = − γ

ωc

I − 1

2
mωcx̂

c
2 − 1

2
imωc

√
h̄

2mωc

(
a− − a

†
−
)
,

p̂2 = 1

2
mωcx̂

c
1 − 1

2
mωc

√
h̄

2mωc

(
a− + a

†
−
)
.

(55)

It then follows that the two sectors
(
x̂c

1, x̂
c
2

)
and

(
a−, a

†
−
)

commute with one another, while
we have

[
x̂c

1, x̂
c
2

] = − ih̄

B
I,

[
a−, a

†
−
] = I. (56)

Hence indeed this reparametrization of phase space is a canonical transformation preserving
canonical Poisson brackets (one may rescale, say x̂c

2, by the factor (−B = −mωc), if one

10
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prefers). Related to the magnetic centre sector,
(
x̂c

1, x̂
c
2

)
, we also have the following Fock

algebra generators,

x̂c
1 =

√
h̄

2mωc

(
a+ + a†

+

)
, x̂c

2 = i

√
h̄

2mωc

(
a+ − a†

+

)
, (57)

which are such that[
a+, a

†
+

] = I. (58)

These operators
(
a+, a

†
+

)
correspond to the right-handed chiral mode of the ordinary Landau

problem which in that context has no time dependence, but acquires one in the present case
because of the constant force of strength γ which indeed sets into motion the magnetic
centre. Note that x̂c

1 corresponds to the magnetic centre position along the x1 axis, while
the contribution x̂c

2 to x̂2 corresponds to its position along the x2 axis. The contribution
(−γ /ωc = −mγ/B) to p̂1 corresponds to the velocity momentum of the magnetic centre,
mẋc

1. Finally,
(
a−, a

†
−
)

correspond to the left-handed chiral rotating mode with angular
frequency ωc of the ordinary Landau problem in the magnetic centre inertial frame

A direct substitution of these relations in the Hamiltonian finds

Ĥ = h̄ωc

(
a
†
−a− +

1

2

)
+ γ x̂c

2 +
1

2
m

( γ

B

)2
. (59)

The physical meaning of each of these contributions should be clear enough. The very last
term corresponds to the kinetic energy of the magnetic centre moving at constant velocity of
norm |γ |/B. The term before the last represents the potential energy along the x2 direction,
γ x2, of the magnetic centre position along that axis. And finally the very first contribution
with the two terms in parentheses measures the excitation energy of the usual Landau levels
of the ordinary Landau problem, as seen from the magnetic centre inertial frame.

This expression for the quantum Hamiltonian also makes it clear which basis of states
diagonalizes that operator, hence solves the quantum dynamics of the system. Given
the Fock states |n−〉 associated with the

(
a−, a

†
−
)

Fock algebra, and position eigenstates,
x̂c

2

∣∣xc
2

〉 = xc
2

∣∣xc
2

〉
, for the magnetic centre position along the x2 axis, the basis of the

space of quantum states which diagonalizes the dynamics is spanned by the states
∣∣n−, xc

2

〉
(n− = 0, 1, 2, . . ., xc

2 ∈ R), with the normalization,〈
n−, xc

2

∣∣m−, x ′c
2

〉 = δn−,m− δ
(
xc

2 − x ′c
2

)
. (60)

One has

Ĥ
∣∣n, xc

2

〉 = E
(
n, xc

2

)∣∣n, xc
2

〉
, E

(
n, xc

2

) = h̄ωc

(
n +

1

2

)
+ γ xc

2 +
1

2
m

( γ

B

)2
. (61)

The fact that the magnetic centre component of these quantum states is not normalizable
makes now perfect physical sense. Indeed, the motion of that magnetic centre is that of a free
particle with a predetermined velocity set by the ratio (−γ /B) in the x1 direction. Hence in the
configuration space representation states possess wave functions with a plane wave component
in that direction, which is not normalizable and leads to the above δ function normalization for
energy eigenstates. Having chosen from the outset not to work in the Landau gauge guarantees
without ambiguity that this lack of normalizability is indeed related to a physical feature of
the solution rather than a not totally appropriate choice of phase space parametrization.

Given the Hamiltonian, it is also possible to determine the time dependence of the phase
space operators in the Heisenberg picture. One finds

11
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x̂1(t) = x̂c
1 − γ

B
t I +

√
h̄

2mωc

(
a− e−iωct + a

†
− eiωct

)
,

x̂2(t) = x̂c
2 − i

√
h̄

2mωc

(
a− e−iωct − a

†
− eiωct

)
,

p̂1(t) = − γ

ωc

I − 1

2
mωc x̂c

2 − 1

2
imωc

√
h̄

mωc

(
a− e−iωct − a

†
− eiωct

)
,

p̂2(t) = 1

2
mωc x̂c

1 − 1

2
γ t I − 1

2
mωc

√
h̄

mωc

(
a− e−iωct − +a

†
− eiωct

)
, (62)

namely,

x̂c
1(t) = x̂c

1 − γ

B
t I, x̂c

2(t) = x̂c
2 . (63)

In the expressions for x̂i (t), one may recognize the solution to the ordinary Landau problem
(the terms involving a− and a

†
−), valid in the magnetic centre inertial frame, to which is added

the Galilei boost with the constant velocity of the magnetic centre towards the inertial frame
with the potential energy γ x2, and the initial position of that magnetic centre along both the x1

and x2 axes. Incidentally, and as was indicated at the end of the previous section, this is in fact
how the change of variables (54) was identified initially. Writing out the classical solution for
xi(t) precisely in that way, and then identifying the ensuing expressions for pi(t) given that

p1(t) = mẋ1(t) + 1
2Bx2(t), p2(t) = mẋ2(t) − 1

2Bx1(t), (64)

all in a manner that meets all Hamiltonian equations of motion, the appropriate operators in
the Heisenberg picture are identified. Upon substitution into the quantum Hamiltonian, one
then is bound to find the quantum solution for it as well.

Note also that in the same spirit as that of the entire discussion so far, the above solution of
the singular Landau problem extended with a linear potential has remained purely algebraic,
without the need to solve the differential Schrödinger wave equation. To the best of our
knowledge, this specific approach and construction for the extended singular Landau problem
is not available in the literature.

As a passing remark of some interest as well, note that given a projection onto any
subspace of Hilbert space corresponding to a Landau sector at a fixed level n−, namely onto
the subspace spanned by the states

∣∣n−, xc
2

〉
for a fixed n− and for all xc

2 ∈ R, in effect the
only remaining degrees of freedom are those of the magnetic centre, x̂c

1 and x̂c
2, which obey

the commutation relation of the ordinary Moyal–Voros plane of noncommutative geometry
[5, 6],

[
x̂c

1, x̂
c
2

] = −i(h̄/B)I. This result is readily established through the present discussion
without the need of any actual calculation of projected matrix elements, in contradistinction
to the usual derivation of this result available in the literature [9].

Finally, it now becomes feasible without much difficulty to explicitly work out the
configuration space wave functions for all energy eigenstates, given the expressions of
the operators

(
x̂c

1, x̂
c
2, a−, a

†
−
)

in terms of (x̂i , p̂i). This task would be a great deal more
involved were one to consider from the outset the differential Schrödinger equation eigenvalue
problem given the Hamiltonian in the form of (53). Without going here into the details of
the calculation, let us only mention that in a first step one works out the wave function for
the lowest Landau sector,

∣∣n− = 0, xc
2

〉
, as a function of xc

2. Applying then the operator a
†
−

on that solution, one readily finds the wave functions for all states
∣∣n−, xc

2

〉
, including their

12
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normalization. When normalizing the position eigenstates of the configuration space basis as
is usual,

〈x1, x2|x ′
1, x

′
2〉 = δ(x1 − x ′

1) δ(x2 − x ′
2), x̂i |x1, x2〉 = xi |x1, x2〉, (65)

one finds〈
x1, x2

∣∣n−, xc
2

〉 =
(mωc

πh̄

)1/4 (mωc

2πh̄

)1/2 (−i)n√
2n n!

× e
−i mωc

h̄
x1(x

c
2− 1

2 x2+ γ

mω2
c
)
e− mωc

2h̄

(
x2−xc

2

)2

Hn

(√
mωc

h̄

(
x2 − xc

2

))
, (66)

Hn(u) being the Hermite polynomial of order n.
Hence these energy eigenstates are localized only in the x2 direction, while in the x1

direction they are totally delocalized and non-normalizable since they propagate in time in
that direction as a free particle of predetermined constant velocity (−γ /B). The probability
density of these states thus also looks like a series of (n + 1) parallel stripes with exponentially
smooth edges, and invariant under translations along the x1 axis.

Having constructed a complete solution of this singular Landau problem extended by a
linear potential, note how all these results are smooth in the parameter γ , and indeed reproduce
in the limit γ → 0 those of the ordinary Landau problem. Clearly in that limit, the states∣∣n−, xc

2

〉
remain nonnormalizable, because the right-handed chiral sector

(
a+, a

†
+

)
has been

diagonalized rather in terms of the operator x̂c
2, namely by having required the magnetic

centre position to be sharp in the x2 direction, hence totally delocalizing its position along
x1, since the two coordinates of the magnetic centre obey a Heisenberg algebra and do not
commute. However in the limit γ = 0 each of the Landau sectors distinguished by n−
becomes once again energy degenerate, allowing for another choice of energy eigenstate basis
in the magnetic centre sector. Choosing for it once again the orthonormalized Fock state basis
|n−, n+〉, one recovers precisely exactly the same solution as that constructed in section 2.1
(with (x1, x2) = (0, 0)). However the construction of the present section is useful even for
the ordinary Landau problem, when a sharp rectilinear edge is introduced in the plane, as we
now discuss.

5. The Landau problem in the half-plane with a linear potential

A noteworthy feature of the energy spectrum (61) is that it is unbounded below, and yet the
quantum system (as well as the classical system) remains stable because the magnetic force
combines with the constant force of strength γ to keep the particle rotating periodically around
a magnetic centre that moves at constant velocity along the x1 axis. Clearly, the reason for
this unboundedness in the energy is that the particle may ‘fall off the plane’ in one of the x2

directions, so to say, a way of putting this fact which is particularly appropriate in the case
that the constant force is indeed that of gravity.

A manner in which to avoid this unboundedness is to restrict the range of x2, namely
consider now the Landau problem on the half-plane still with the linear potential. Assuming
now that γ > 0, let us therefore restrict to the x2 � X2 half-plane for some value of X2 ∈ R,
and reconsider the solution of the quantized system. Such a situation is also of physical interest.
Given that the Landau problem is of relevance to the quantum Hall effect, in particular in its
integer and even fractional manifestations, combining the magnetic field with a constant force
acting inside the plane, be it electrical or gravitational, may allow for interesting properties
of that collective quantum fermion phenomenon to manifest themselves. In the gravitational
context by tilting the quantum Hall device towards the vertical direction, one is setting up a
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gravitational quantum well in combination with the quantum Hall effect. Given that the energy
quantization of gravitational quantum states in a gravitational well has been observed already
with ultra-cold neutrons [10], a quantum Hall set-up may provide an interesting alternative to
such measurements, provided that the orders of magnitude for any effect are large enough to
be observable. Of course, given the weakness of gravity, an electric field stands a much better
chance to display any such interesting effects.

Clearly the change of variable specified in (54) is still in order in this case, leading to the
Hamiltonian in (59). However there is a subtlety now, given the boundary at x2 = X2. Since
one has to restrict now to the quantum Hilbert space of configuration space wave functions
that vanish at that boundary as well as inside the excluded domain, x2 < X2, the conjugate
momentum operator p̂2 does not possess a self-adjoint extension and is in fact only symmetric
on that space [11]. Indeed, as the differential operator (−ih̄∂2), the operator p̂2 maps quantum
states out of that Hilbert space, while we have, for any two states |ψ〉 and |ϕ〉 represented by
functions ψ(x2) and ϕ(x2) in the (x̂2, p̂2) sector,

〈ϕ|p̂2ψ〉 =
∫ +∞

X2

dx2 ϕ∗(x2)

(
−ih̄

d

dx2
ψ(x2)

)

= −ih̄
∫ +∞

X2

d(ϕ∗(x2)ψ(x2)) +
∫ +∞

X2

dx2

(
−ih̄

d

dx2
ϕ(x2)

)∗
ψ(x2)

= −ih̄
∫ +∞

X2

d(ϕ∗(x2)ψ(x2)) + 〈p̂2ϕ|ψ〉. (67)

Given that both wave functions ψ(x2) and ϕ(x2) mush vanish at x2 = X2 and x2 → +∞ (the
latter condition applies since states must be normalizable at least in the x2 direction), it follows
that p̂2 is indeed a symmetric operator.

However among those operators contributing to the quantum Hamiltonian still given as
in (59), this ambiguity affects only the

(
a−, a

†
−
)

operators, which are thus no longer adjoints
of one another, since each maps outside the considered space of quantum states. However, the
other operator involved in diagonalizing the Hamiltonian, namely x̂c

2, is not affected by that
lack of self-adjointness in p̂2 since it is given as

x̂c
2 = 1

2
x̂2 − 1

mωc

p̂1 − γ

mω2
c

, (68)

which is an expression that does not involve the operator p̂2, in contradistinction to the operators(
a−, a

†
−
)
. Consequently, one may still consider the space of eigenstates of x̂c

2, whose wave
functions are given as in the construction of the previous section, as a factor in the tensor
product structure providing a basis of energy eigenstates. For the remaining separable factor
in that tensor product, even though one may no longer exploit the existence of a Fock vacuum
annihilated by a− in order to diagonalize the Hamiltonian, it is rather the latter Hamiltonian
which needs diagonalization, a procedure which does not necessarily require a construction
of Fock states representing a Fock algebra which in the present case does not exist. As will be
seen hereafter, in contradistinction to the

(
a−, a

†
−
)

operators, the Hamiltonian operator itself
is not affected by that issue and does possess a self-adjoint extension [11].

Writing the quantum Hamiltonian in the form

Ĥ = 1

2
h̄ωc

(
a
†
−a− + a−a

†
−
)

+ γ x̂c
2 +

1

2
m

( γ

B

)2
, (69)

and using the explicit expressions for a− and a
†
− in (54), one undoes part of the canonical

transformation to find

Ĥ = 1

2
mω2

c

(
1

2
x̂1 − 1

mωc

p̂2

)2

+
1

2m

(
p̂1 +

1

2
mωcx̂2 +

γ

ωc

)2

+ γ x̂c
2 +

1

2
m

( γ

B

)2
. (70)
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Let us now consider the diagonalization of this operator by working in the configuration space
wave function representation for quantum states, ψ(x1, x2). Since energy eigenstates are
certainly eigenstates of x̂c

2, their wave functions certainly separate as

ψE,xc
2
(x1, x2) = e

−i mωc
h̄

x1(x
c
2− 1

2 x2+ γ

mω2
c
)
ϕE,xc

2
(x2), (71)

E denoting their energy eigenvalue. A direct substitution in the stationary Schrödinger equation
in the configuration space representation then reduces to, for any given value of xc

2,{
− h̄2

2m

d2

dx2
2

+
1

2
mω2

c

(
x2 − xc

2

)2
+ γ xc

2 +
1

2
m

( γ

B

)2
}

ϕE,xc
2
(x2) = E ϕE,xc

2
(x2), (72)

where one must also meet the condition ϕE,xc
2
(x2 = X2) = 0 which will imply a quantization

rule for the energy values E. Note that indeed this operator possesses a self-adjoint extension
for this choice of boundary conditions [11].

Introducing the notation,

u =
√

2mωc

h̄

(
x2 − xc

2

)
, a = − 1

h̄ωc

(
E − γ xc

2 − 1

2
m

( γ

B

)2
)

, (73)

the above eigenvalue equation becomes(
d2

du2
−

(
1

4
u2 + a

))
ϕE,xc

2
(u) = 0. (74)

The general solution to this equation is a linear combination of the two parabolic cylinder
functions U(a, u) and V(a, u) [12]. However since wave functions are required to vanish at
x2 → +∞, only the U(a, u) branch is allowed8. Hence the solution is of the form,

ϕE,xc
2
(x2) = N

(
E, xc

2

)
U(a, u), (75)

N
(
E, xc

2

)
being some normalization factor. Consequently the energy quantization condition

is given by the boundary condition,

U

(
a,

√
2mωc

h̄

(
X2 − xc

2

)) = 0. (76)

Even though an explicit resolution of this condition requires a numerical analysis, given
(74) it should be clear that this condition implies that the spectrum of a values belongs to a
semi-infinite discrete set labelled as

a = −an

(
X2 − xc

2

)
, n = 0, 1, 2, . . . , (77)

where each of the quantities an

(
X2 − xc

2

)
is a continuous function of

(
X2 − xc

2

)
, while

altogether they define a set of increasing values as n increases. Indeed, when multiplied
by a factor (−1) and up to normalization factors, (74) is the Schrödinger wave equation
for a harmonic oscillator with eigenvalue (−a), of which the quadratic potential, namely
u2/4, is truncated for u <

√
2mωc/h̄

(
X2 − xc

2

)
. Since this potential with an infinite wall at

u = √
2mωc/h̄

(
X2 − xc

2

)
is bounded below and unbounded above, its spectrum of standing

waves and energy eigenvalues is certainly both bounded below and semi-infinite discrete,
with growing eigenvalues (−a) as the level index quantum number n = 0, 1, 2, . . . keeps
increasing.

8 Both functions U(a, u) and V(a, u) diverge as u → −∞, unless a = −n − 1/2 for n = 0, 1, 2, . . . in which case

only U(a, u) also vanishes in that limit, and in fact reduces [12] to U(−n − 1/2, u) = 2−n/2 e−u2/4Hn(u/
√

2).
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Note however that the energy quantization condition for a, hence its spectrum of values
an

(
X2 − xc

2

)
, is independent of the parameter γ . For instance, since the function U(a, u)

vanishes in the limit u → −∞ only provided [12] a = −n − 1/2, one has

lim
X2→−∞

an

(
X2 − xc

2

) = n + 1
2 , lim

xc
2→+∞

an

(
X2 − xc

2

) = n + 1
2 . (78)

In conclusion, the configuration space wave functions of the energy eigenstates of the
system are given in the form

ψn,xc
2
(x1, x2) = N

(
n, xc

2

)
e
−i mωc

h̄
x1(x

c
2− 1

2 x2+ γ

mω2
c
)
U

(
−an

(
X2 − xc

2

)
,

√
2mωc

h̄

(
x2 − xc

2

))
, (79)

N
(
n, xc

2

)
being a normalization constant to be determined, while the energy spectrum is

E
(
n, xc

2

) = h̄ωc an

(
X2 − xc

2

)
+ γ xc

2 +
1

2
m

( γ

B

)2
. (80)

As compared to the results obtained in the plane in section 4, the only difference is the
replacement by the quantities an

(
X2 − xc

2

)
of the contributions in (n + 1/2) of the left-handed

chiral mode
(
a−, a

†
−
)
, while in the wave functions of these energy eigenstates the Hermite

polynomial contribution multiplied by the Gaussian factor is replaced by that of the parabolic
cylinder function. Furthermore there is no restriction whatsoever on the possible values for
xc

2, even though the particle remains confined to the x2 � X2 region. Yet the energy spectrum
remains now bounded below.

Note that in the limit where the edge of the half-plane is pushed out again back to infinity,
namely X2 → −∞, the above results reduce smoothly back to those of section 4, as they
should. However for any finite position of the edge at x2 = X2, even in the limit when
γ → 0+, the energy spectrum remains non-degenerate since the values an

(
X2 − xc

2

)
are

functions of
(
X2 −xc

2

)
, hence of xc

2 and are independent of γ . In other words, the Landau level
degeneracies of the ordinary Landau problem in the plane are lifted because of the interactions
brought about by the edge—namely an infinite potential wall—at a finite position in the plane.
Incidentally, the set of transformations in (54), identified first by considering the extra linear
potential added to the ordinary Landau problem, proved essential in being able to construct
the above explicit solution for the ordinary Landau problem in the half-plane.

Some features of the above complete solution may also be understood from the point of
view of the classical trajectories in the half-plane, even in the presence or not of the constant
force of strength γ . Given any value for xc

2 > X2 however close to X2, there always exist
solutions of sufficiently small energy such that the radius of their circular motion about their
(possibly moving, if γ 	= 0) magnetic centre remains less than the difference

(
xc

2 − X2 > 0
)
,

so that the particle then does not bounce off the wall at x2 = X2. Such trajectories are not
distorted by the presence of the edge. At the quantum level because of the nonlocal nature of
their wave function, such states display a slight deformation of their wave function, hence also
of their energy value, but the less so the smaller is their energy and the larger is the value for xc

2
away from X2. However as soon as the energy of the classical trajectory becomes large enough
so that its radius becomes larger than

(
xc

2 − X2
)
, the particle starts bouncing periodically off

the wall at x2 = X2 in a series of elastic collisions, and is, in effect, set into motion—in case
γ 	= 0 this extra motion is superposed on that of the magnetic centre already—along the x1

axis in the positive direction. These trajectories are thus distorted, and even more so are the
quantum states associated with such values of xc

2 and energy. Finally, even when xc
2 lies inside
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the ‘forbidden’ region, xc
2 < X2, there do exist classical solutions of sufficiently large radius,

namely energy, hence also quantum states of sufficiently large energy. But these states suffer
the strongest distortion in wave function and energy values away from the equally spaced
energy spectrum when the infinite wall at x2 = X2 is absent.

In terms of the effective harmonic potential contributing in the Schrödinger equation for
ϕE,xc

2
(x2) in (72), namely

Veff = 1
2mωc

2

(
x2 − xc

2

)2
for x2 � X2, Veff = +∞ for x2 < X2, (81)

which is thus truncated on the left-hand side for x2 < X2, the three typical situations discussed
above correspond to when the minimum of that potential at x2 = xc

2 lies, respectively, well
inside the region x2 > X2, or close to the edge, and finally inside the forbidden region x2 < X2.
Solutions then correspond to standing waves inside this truncated harmonic well, which need
to vanish at the infinite wall. As was noted previously, this is also the reason why the spectrum
of an

(
X2 − xc

2

)
values is always bounded below and discrete, as confirmed by a numerical

analysis, and depends on xc
2 in such a manner that the total energy spectrum (80) remains

bounded below however large and negative xc
2 may be.

6. Conclusions

This paper considered different variations on the same theme of the ordinary Landau problem.
By first understanding why the choice of Landau gauge for the magnetic vector potential leads
to non-countable and non-normalizable energy eigenstates whereas a solution in any other
gauge produces an energy eigenbasis of countable and normalizable eigenstates, different
canonical transformations of the phase space variables have been discussed enabling a
straightforward resolution of different extensions of the Landau problem with a potential
energy quadratic and linear in the plane cartesian coordinates.

As a matter of fact the main aim of this study was the explicit resolution solely through
algebraic means of a singular extension of the Landau problem, namely when a potential
energy only linear in the cartesian coordinates is introduced. Based on a specific canonical
transformation, a clear separation of magnetic centre degrees of freedom and chiral rotating
ones is achieved, allowing for a simple identification of the energy eigenspectrum and even
of all its configuration space wave functions. The advantages of this approach are then finally
brought to bear on the explicit and analytic solution of this singular Landau problem in the
half-plane.

In order to come closer to an actual physical situation of physical interest in the quantum
Hall context, whether the linear potential is related to a constant electric field or a gravitational
well, the present study may be pursued by adding three more edges in the half-plane in order
to build up a slab of finite extent, as a model for an actual experimental device for quantum
Hall measurements. As a consequence, presumably the choice of variables which enabled the
present solutions in the plane and in the half-plane will no longer be the most appropriate.
Indeed, looking at the wave functions in (66) and (79), in that form it does not appear possible
to enforce a vanishing wave function at two separate values of x1. This is due to the fact
that the plane wave component in x1 of these wave functions derives from the eigenvalue
value equation for the magnetic centre coordinate x̂c

2, which also contributes linearly to the
Hamiltonian. However, since the two magnetic centre coordinates x̂c

1 and x̂c
2 do not commute,

one cannot restrict both to be sharp, and by restricting the value of wave functions for specific
values of x1 certainly implies that energy eigenstates are no longer eigenstates of x̂c

2. In other
words, like in the half-plane where one could no longer first diagonalize the Fock algebra
and then produce the energy eigenspectrum, in a finite slab neither the Fock algebra nor the
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operator x̂c
2 may be diagonalized together with the Hamiltonian. From that point of view

the diagonalization of the Hamiltonian in the form of (53), or possibly even in the Landau
gauge rather than the symmetric gauge, certainly looks more appropriate. This issue deserves
a dedicated study, which is likely to lead once again to parabolic cylinder functions in the x2

direction, and ordinary trigonometric standing waves in the x1 direction.
However, for what concerns the energy spectrum one should not expect a result that differs

much qualitatively from that in (80). Namely besides a term analogous to the one linear in
γ xc

2, there should be another contribution whose scale is set by the Landau problem itself,
h̄ωc. Furthermore, this latter contribution should remain independent of the coefficient setting
the strength of the linear potential, γ . Consequently, the only effect of introducing this extra
interaction energy in the system is to slightly tilt the spectrum of Landau levels.

To assess under which experimental conditions such effects may become observable, one
needs to understand how much the energy spectrum—namely that of the density of states in
conduction properties of such Hall probes—is a function of the geometry of such a finite slab
as compared to the effects of a linear potential term, as may be induced by an electric field
or the gravitational interaction. But whatever the finer details of these dependences turn out
to be, it remains a fact that the factors setting the scales for these two types of effects are
the Landau level gap, h̄ωc, and the potential energy γ x2. This should allow for first-order
estimates already.

Beyond the analysis considered here, another extension of potential interest is to include
the spin 1/2 degrees of freedom of the charged particle, as is indeed the case for electrons in
actual quantum Hall experiments.

Finally, motivated by totally different considerations, it would also be interesting to
reconsider the present singular Landau problem in the plane and the half-plane in the context
of noncommutative quantum mechanics, namely for the Landau problem defined over the
Moyal–Voros plane, using the techniques developed in [6, 13, 14] and having in mind to
possibly identify some approach to experimentally set upper bounds on the noncommutativity
parameter of noncommutative space(time) geometry.
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